'LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR -89-1693

(ONE e

TN RN

CUN U 71989

LOS Algmos Nalonal Laboraiory 1§ ODSraied Dy 1ne Ut versly of Cautorrug for e Unied Biates Depanmem of Energy under coniract W-T403-ENG 16

TITLE

AUTHOMS)

SUBMITTED TO

LA~UR--89-1693
DEBY 013442

XCL - A FAMILY OF PROGRAMMING LANGUAGE-BASED SHELLS

Mark A. Rouschke, C-10

Cray Users Group Meeting, Universal Cicy, California,
April 24-28, 1983

DISCLAIMER

This coport was prepaged i a9 acaoun' of work sponwored by an agency ol the | mited Slales

{pnerr ment

Netther *he | nited States Canerament aor an apemy thereol nor any o therr

smplovees makes any aarrann express oromphed o ssumes any legal tabiling G responw

see teren ey el et ol proatat LAl Y LA

o the o ampleteness

o usetulness ol any ntotmation apparatus prmluct o

Pedomatedor crpresents tha ity g would ot mtunge prosoately wned nght. Reler

e R trade namge it mark

Ttk arer ot dhordwe s ot aecessanly anbitaie o mpiy iy endorsenient vom
et e e ey S e Danied stales Droverminent o gy agencs Cheteo! Tl oeas
it ey ot ethor cxpressed etegr

ol uecesnards state o retlect thase 7 the

S Stales Dpnvervarnt o0 ans ageny therend

B dcceprarce o° 1 AINCIQ NG B LD IPAY 1ECOGNINS thEL 1he U § Gurarnmant 19iewn, & AONORCIUEHS *OVBAY- 108 ICONE 10 DUDHEN O F@RYOduCE
'"@ DuD:-AREY 07 N ‘Mg CONIrEukon ¥ 'n glir, IR’ 10 G0 80 'O U Y Jovernmen! Durpoeed

“mne (08 A gm0y NRYOrR (A%

RIS T The DUDILNY -GNty Ihig MNCID 08 WOV PErtDrmed unYer 1Re BuSP:ICes O Mo U 3 Deper'™er: ' n-

" . Vg
LS A0S LesAiamos NatonalLabarstory <2

10N N0 0N Re

1=
b

: 1§ umLiMe
St N, n|s‘n|nl|||u~ Ut 11 m“..

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

XCL - A Family of Programming Language-Based Shells

Mark A Roschke*
Compuung and Communicauons Division
Los Alamos Nauonal Laboratory
Los Alamoes, NM 87545

Introduction

As the three major UNIX shells have emerged. they have shown
little inchination to include syntax and semanucs from exisung
programming languages. The first of these shells. sh i1]. con-
tans only a small amount of C-lke syntax. Csa [2] provides
some C language expression syntax, but includes very htle other
C syniax. The newest of these shells. ksh [3]. also includes some
C-ike expression syniax, although they <onitain some
sigraficanty un-C-like syntax 1n such areas as relauonal and logi-
cal operators.

Several much less widely used shells [4-6] have been wniten that
much more closely resemble parucuiar programming languages.
However. each of these shells have the disadvaniage of not being
based upon a widely used programming language. In addiuon.
interacive commands tend to be difficult to 2nter because they
must frequently be entered using normal prcgramming language
constructs such as functucn calls.

Thus. the vast majonty of programmers of today’s UNIX shells
must deal with a shell interface that i1s not based upon any fami-
lar programmng language. This paper descnbes some of the
features of the xc/ family of shells. Each of these shells .s based
~losely upon an exisung pregramming language and provides the
user with a familiar and highly programmable shell interface

The Familiar Programming Language

Only a very few users of 1oday’s UNIX shells are provided with
a shell interface based upon a familiar programmiag language.
In contrast \.1th current UNIX shells. the xc/ family of shells pro-
»1des the user with a scnes of shell interfaces. each of which s
kased heavily upon a widcly used programming language

X hased upon two fundamental premises that a program-
ming language .an serve as a good workable bhasis for a shell,
and that it 1s highly deswrable for that programnang language o
he one with which the user i1s famihar

Even though the primary object of a shell 15 10 execule processes.
much of the code wniien n a shell involves concepts teund in all
af today s programming .anguages These concepts ing lude such
areas as looping. dectsion making. vnng mampulaton tunnon
cxecuion and anthmeuc calculauons

*Thys work wag perf-rmy _ader e sutpices { ihe - Y Nepanument o nesgy

Basing a shell closely upon a familiar programming language
provides several major advantages to the user. First. much iess
ume and effort 1s required on the user’s pan 10 leam a sufficicnt
poruon of the shell in order to be producuve. Second. a user can
make use of current programming habits and problem solving
techniques by being able 10 use familiar everyday constructs as
block structures, expressions. and library functions.

The more cemfortable the user 1s with the capabiliues of the
shell, the less inchinauon there 1s for the user 10 resort 10 wriung
code 1n a programming language 10 accomplish a given task that
may be well suited o a shell. This 1s especially important when
efficiency 1s not of pnmary imponance. since shell algonthm.
often consist of 10 to 100 umes less code than the same algo-
nthm coded tn a programming language.

The requirement that the programming language must be familiar
generates its own implementauon challenges. If a shell 1< hased
only upon a single programming language. those users program-
ming in any another language are essenually ignored. The only
way 0 provide a shell based upon a familiar programming
language (short of requunng all programmers o program in the
same language) 1s (o provide a senes of shells bascd upon Jil-
ferent programming .anguages. Xc!/ provides shell intertaces
based upon the C and FORTRAN programming languages. »ith
the baskc design of the shells allowing for relauvely casy imple-
mentauon of other language interfaces

Language Features

The features direcuy rclated to the respecuve programming
language cover a wide range of syntax and semanti~. therebs
providing the user with a much larger familiar language ens ri:n
ment than can be obtained by providing only a himued et o
familar language constructs. such as cnly expressions

Since any deviauon from the syntax and semantics of the respe. -
uve programming language increases the potenual for .onlgs.on
mistakes. and frustrauon. such deviations have been kepl Ge g
minimum and are largely <onfined to the arca of dec largtions -
lack thereofi

Programs and Functions

(urrent shells have cssenually no equivalent to tunctens e e
programmung language sensc of the word and insteasd ;10 1

tacility that amounts 10 a single-function program. Although the
term "funcuon” may cven be used to refer (o such a faciluy, the
way in which thesz faciliues interact with each other has most, 1f
not all, of the following important auributes of a program facil-
ity: command line syntax, completion status, and the propagation
of environment and signal values. As a result, the user is
prevented from uulizing a true function facility (in the program-
ming language sense of the word) when approaching any given
problem. and the resulting code is often far from opumal because
of such 4 limiaton. In addition, the look and fecl of these
single-function programs is further complicated by the fact that
most shells globally scope (at lcast by defaull) user vanables
across these single-function programs.

The inclusion of both programs and funcuons in xc! hus several
advantages. lirst, the user may take advantage of such famihar
function features as formal arguments, explicitly set and refer-
enced rcturn values, and famibar inter-function scoping rules.
Second, standard library funcuons such as 1/O, string manipula-
uon, and informauonal funcuons can be provided, and other
hbrary functions can be provided 1n a way that naturally extends
the capabiliues of the language. And third, the inclusion of a
function facility then allows for a scparate program facility that
has dse normal fcatures of inter-program communicauon, includ-
Ing not scoping user variables across program boundanes.

Block Structures and Expressions

Much of the block structure and expression syntax of xcf s taken
directly from the respecuve programming language This pro-
vides the user with a powerful st of famihiar capabihines with
which to approach programming problems. In those few
instances 1n which these capabihiies are insufficient for a shell
cnvironment, such as in loops and sting manipulaton, several
loop structures and string operators were added.

In addiwon o the normal use of cxpressions 1n programming
language constructs, xc/ also allows language expressions o be
placed 1n non-language commands by simply enclosing the
cxpressions within braces. This feature is referred (G as expres-
s1on substituuon and 1s a much more powerful feature than the
torms of parameter substituton employed by today's magor
UNIX shells. (Non-language commands are those commands
that have a command-iine style syntax and are used to execute
processes or butlt-in commands). This allows the programmer to
use essentially the ame programming language cxpression syn-
tax in vinually any command without ambiguity.

Commands

Many vl commands are drawn directly from the respective pro-
pramriang language and very closely tollow the svntax of the
programming language In keeping with the concept ol con
sistent syntac., these programming language-based commands are
not marked with any special syntax in order to ditferentiawe them
from other wi commands And an keeping with programminy

language conventons, programming language-hased commands
10 not have anv completion status associated with them.

Variables
There arc three types of vanables in xcl: user vanables, environ.
ment vanables, and control vanables. User vanables tollow o

famihar scoping convention 1n that they are local unless declared
to be global.

Environment vanabies are directly patterned after UNIN
environment vanables. They follow the same scoping rules as
UNIX: 1e., they are propagated across pmgram boundanies m a
downward-only fashion.

Control vanables may be thought of as a kind of ./ contro,
pancl having many swilches and dials that conuol the inemal
execuion of xcl. These vanables contun such values a
prompes, scarch paths, and vanous subsutution flags. Althouch
they have no direct programming language counterpart, they may
stll be referenced in the same way as the other two types of van
able descnbed above, and they are global 1in scope across lung
uons.

Debugging

Even in current shells there 1s significant mom for improvement
in the area of debugging. But when the programmer 1s presented
with a shell based closcly upon a famibiar programming
language, significantly more complex shell programs are wnitien,
which further increases the need for improved debugging capa
hilities.

X! provides a dynamic debugging facility based upon the
{71 debugger. This facility ncludes a sigmificant subset ot the
dbxnterface, allowing the user 1o sct breakpao:nts, pnnt the value
of vanables or expressions, eic. This debugging tacility can
drastically reduce the amount of time needed (o debug o hei)
program, and using famihar debugging commands drasticaliy
reduces the amount of ume needed 1o leamn to use such a tacility
Each shell version allows cxpressions o ho entered using the
syntax of the te .pective programming language.

l.anguage Differences

Yol diverges from the respective Programming synlax in sci.or.
arcas, the first of which 1s the type of vanables. For all pra o
purposes. all vanables may be thought of as being of type
Thas approach 1s much more conducive to the mamipulation
wxt messages than s a strongly typed mmplementaton
operands are interpreted in the context ol she apphed cperan.
Thus, two stnings may be concatenated or added, and onis o
latter case are the operands required to be numenc Ant
result of an anthmetic operauon ainvolving ilferent s
operands v alwavs converted o the type of the predon,
operand For caample, in the case of ananteger added o4
g pomt number the result would be g Boatang poont ngmibs

The second area involves storage rescrvation. No declaratons
defining maximum string size are used. Instead, cach value s
assigned memory as necded during execution.

The third areca of divergence involves subscnpts. Arrays of
stnngs are not dircclly supported. [Insicad, subscripts are
included to provide a convenient method of referencing indivi-
dual words or characters within strings. (A word is a substring
delimited by unquoted white space.)

Non-Language Commands

Non-language commands are those commands that are not based
upon the respecuve programming language. These commands
have a command-line syntax and may be interspersed with the
language-based commands. These non-language commands pro-
vide the user with easy-to-enter (blank declimited) commands.
They alsc provide the user with a familiar set of powerful opcra-
tors. The operators deal mostly with vanous forms of subsutu-
uon, such as filename, home directory, and command substilu-
tion. Since there is ineviable overlap in syntax between
language and non-language commands, allowing both of these
command types provides the user with both of these indispens-
able sets of capabiliucs without being confronted with an unfam-
ihar synlax.

A disavantage of this approach 1s that process ¢xecutions carnot
be used directly as logical expressions. [n order to achieve such
an elfect, process cxecutions must be performed as function
calls. However, this disadvantage was considered o be a rela-
uvely small pnce to pay for all of the language capabilies that
are gained as a result of such an approach w0 the design of the
command language.

Example |

The following FORTRAN interface cxample 1s an xc/ routne o
sct the command prompt. The inpu: argument (o this routine 1s a
durectory name. The |...} sequences arc similar to parameter
substituaon found 1n the three major UNIX shells, except that
any arbitrary language cxpression may be placed within the
braces. The prompt 1s set io the name of the host computer, fol-
lowed by the last thiny characters of the directory name, fol-
lowed by "% .

subroutine setprompt(dir)

n = len(dir)

it (n gt 30 dir = dir(n-29:30)

el prompt " (gethostname()} (dir) %~
retumn

end

Example 2

The tollowing C interface example 1s an wl routine to hind a hle
in the standard scarch path. The ¢mdhine command allows the
routine W be passed a command hine instead ot formal argu-
ments. In this case, only a single tile name s allowed. 1y value

1s automatically placed into the local vanable named tile betore
the routne begins cxecuuon. The function strienw s used to
count the number of words 1n the path control variable, which i1~
syntactically marked with a leading 'S’. And the // operator con-
calenates two srngs.

findpath()
{
c¢mdline -name file -position 1
for (1=0); 1<sirlenw(Spath); 1++)
{
if srrempfile, Spath[i}) == ()
puts(Spath(x} // 7/ /1 tiley

Current State

Xclis wniten in C and runs under BSD 4.3 UNIX. Future plans
include a System V version, followed by a UNICOS version. A
number of major features have not yet neen implemented, includ-
ing foreground/background process control, and a screen cdiung
style of command re-execution.

Summary

Xcl is a senes of shells that can significantly increase user pro-
ducuvity. This increase is accomplished by providing lamihar
programming language syntax and capabiliies while reuning
proven traditonal interacuve features found in the major UNIX
shells.

References

{1} Boume, S. R., ""An nwroduction 10 the UNIX shell™
UNIX Programmer’'s Manual. vol. 2A, Tth ¢d.. Bell Tele-
phone Laboratones, Murray Hill. NJ., Jan. 1979

(2] Joy. W, "An introducuon to the C shell™, [N
Programmer's Manudl, vol. 2C. part !, Virtual VAN]
Version, Computer Systems Rescarch Group, Dept. ol
Electncal Engineenng and Computer Science, Univ ot
Califorma at Berkeley, Aug. 1983

13 D G. Kom, "KSH - a shell programmng languace

Proceedings of the 1983 Summer USENIX Conferen
Toronw, pp. 191-202.

(4] M. Matthews and Y Kamath, "'The FP.shell™, £ro 004

ings of the 1984 Summer USENIX Conference. Salt | k.
City, Utah, June 1984, pp. 1133.140.

1S] C S Macdonald, ““fsh - A Functional UNIX Connre !
Interpreter’”, Software Practice and Expertenie 1700
pp. GRS- 70

(6] 1. ROEIs, A Lasp Shell””, SIGPLAN Notces N ol
No. S (May 1980, pp. 24.34

170 DBX b, UNIX tser's Manual, Reference e
Borkeley Soltware Distnibution, Computer S

Division, University of Califomia, Berkeley, Calif, March
1984,

